how to read quantitative papers when you don't know stats

some tips

start with the "big picture"

- even if you don't have a stats background, you can always understand the "big picture"
- identify the inputs and outcomes, don't worry about the math

 WARNING: be aware that papers may present MULTIPLE models, and that these models may have different inputs (and outcomes!)

input: what is it?

- o models basically take input in the form of a data table
 - on number of observations (rows)
 - x number of variables (columns)

observation #	fruit	month	day	year	city	state
1	apple	June	8	1996	Denver	CO
2	banana	April	27	1988	Boulder	CO
	***	• • •	•••	•••	•••	•••
100	kiwi	May	4	1980	Aspen	СО

input: be able to answer these questions

- observations
 - what is the unit of n? (people, cities, countries, etc.)
 - how many are there? (i.e. what's the "n"?)
- variables
 - what is the independent variable? what are the dependent variables?
 - what is the source of data for each variable? (each variable may have a different source)
 - O does the author mention serious missing data problems for any variables?

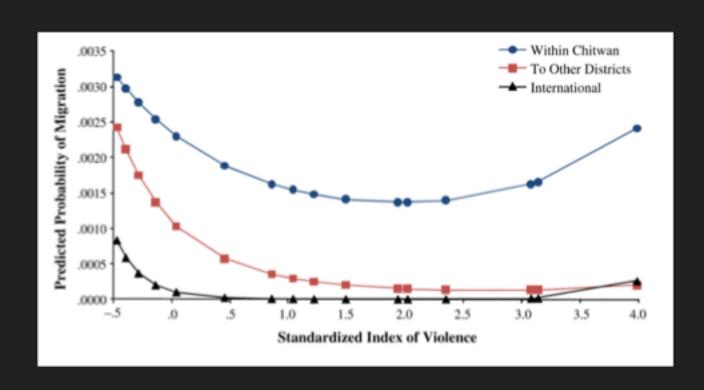
outcomes: some major types

regression models

- outcome will be numerical "coefficients" that describe the relationship between variables
- opositive coefficients mean there is a positive relationship and vice-versa

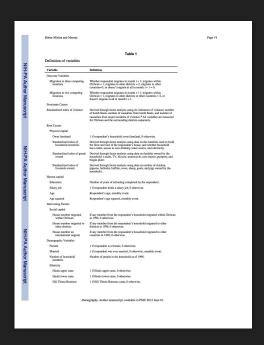
logit / probit models

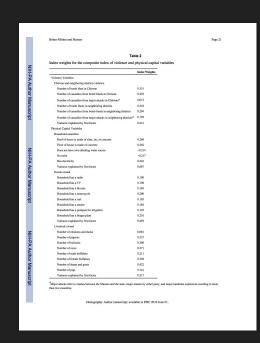
- o primary outcome will be a "probability" or "risk" of an event happening (scale 0-1)
- will also generate numerical coefficients to show how variables contribute to outcomes

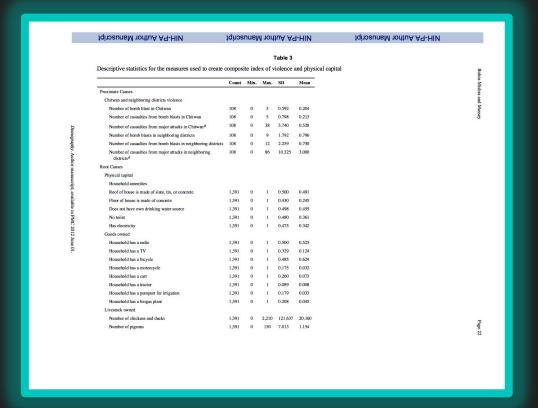

clustering, PCA, topic models

- outcome will be assigning each observation to a group
- the point is to understand differences between the groups of observations

trust that they did the math correctly


- o if it's a peer-reviewed paper, the math is probably fine... or close enough o
- if you don't know stats, it's fine to ignore mathy things like p-values, R-squared, model fit, heteroskedasticity, and variance. just focus on the inputs and outcomes!


tip: look for an actual "big picture"



- generally papers provide figures that you can use to jumpstart your understanding of the "big picture"
- figures most often show the relationship between the independent variable (one of the inputs) and the outcome

tip: look for tables summarizing variables

tip: you can look at the outcomes table...

...but always read the findings section where authors explain and interpret the outcomes.